Fisherの検定

RでFisherの検定をするには fisher.test() を使います。行列は縦に読んで、行数(または列数)を指定します:

> fisher.test(matrix(c(3, 1, 2, 4), nrow=2))

	Fisher's Exact Test for Count Data

data:  matrix(c(3, 1, 2, 4), nrow = 2)
p-value = 0.5238
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
   0.218046 390.562917
sample estimates:
odds ratio 
  4.918388 

Pythonでは scipy.stats.fisher_exact を使います。行列は行ごとに与えます:

from scipy.stats import fisher_exact

fisher_exact([[3, 2], [1, 4]])
(6.0, 0.523809523809524)

返ってくるのはオッズ比と p 値です。Rの fisher.test() と違って、こちらの [[a, b], [c, d]] のオッズ比は (a/b)/(c/d) と同じです。オッズ比の2通りの求め方については2×2の表,オッズ比,相対危険度もご覧ください。オッズ比を報告する際には (a/b)/(c/d) のほうでいいと思います。

fisher_exact() は残念ながら2×2行列しか扱えません。より大きな行列を扱うには FisherExactfexact があるようですが、rpy2 等を使ってPythonからRを呼び出すのがいいかもしれません。